![](https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEjj6x0cNDkQwZCIYmWbTw5giKPBdJKeEXf1suYYooA1lggq0fpmoCh7a0n7Pskt_qM_zDdIeoSqiRT3akKFDunc_IAox_8hVZrW_mTSqIW3UMaLe_sXR0TtHIL36UaqSb5o6M_ppnrNCL8/s320/tres%2525principios09%5B1%5D.jpg)
la circulación de fluidos incompresibles, de manera que podremos explicar fenómenos tan distintos como el vuelo de un avión o la circulación del humo por una chimenea. El estudio de la dinámica de los fluidos fue bautizada hidrodinámica por el físico suizo Daniel Bernoulli, quien en 1738 encontró la relación fundamental entre la presión, la altura y la velocidad de un fluido ideal. El teorema de Bernoulli demuestra que estas variables no pueden modificarse independientemente una de la otra, sino que están determinadas por la energía mecánica del sistema.
Supongamos que un fluido ideal circula por una cañería como la que muestra la figura. Concentremos nuestra atención en una pequeña porción de fluido V (coloreada con celeste): al cabo de cierto intervalo de tiempo Dt (delta t) , el fluido ocupará una nueva posición (coloreada con rojo) dentro de la Al cañería. ¿Cuál es la fuerza “exterior” a la porción V que la impulsa por la cañería?
Sobre el extremo inferior de esa porción, el fluido “que viene de atrás” ejerce una fuerza que, en términos de la presiónp1, puede expresarse corno p1 . A1, y está aplicada en el sentido del flujo. Análogamente, en el extremo superior, el fluido “que está adelante” ejerce una fuerza sobre la porción V que puede expresarse como P2 . A2, y está aplicada en sentido contrario al flujo. Es decir que el trabajo (T) de las fuerzas no conservativas que están actuando sobre la porción de fluido puede expresarse en la forma:
T=F1 . Dx1- F2. Dx2 = p1. A1. Dx1-p2. A2. Ax2
Sobre el extremo inferior de esa porción, el fluido “que viene de atrás” ejerce una fuerza que, en términos de la presiónp1, puede expresarse corno p1 . A1, y está aplicada en el sentido del flujo. Análogamente, en el extremo superior, el fluido “que está adelante” ejerce una fuerza sobre la porción V que puede expresarse como P2 . A2, y está aplicada en sentido contrario al flujo. Es decir que el trabajo (T) de las fuerzas no conservativas que están actuando sobre la porción de fluido puede expresarse en la forma:
T=F1 . Dx1- F2. Dx2 = p1. A1. Dx1-p2. A2. Ax2
No hay comentarios:
Publicar un comentario